Abelian Hidden Subgroup Problem

Laura Mancinska

University of Waterloo,
Department of C\&O
December 12, 2007

Abelian hidden subgroup problem

Outline

- Basic concepts in quantum computing
- Statement of the hidden subgroup problem (HSP)
- Quantum Fourier transformation
- Quantum algorithm for HSP
- Complexity and applications of the algorithm

If we are to understand a system that does a computation we have to answer two main questions:
(1) What are the states of the system?
(2) How does the system evolve from one state to another?

Deterministic computation

(1) The state of the system is $[x]$, where $x \in\{0,1\}^{n}$
(2) The evolution of the system is $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Probabilistic computation

(1) The state of the system is a formal sum over $x \in\{0,1\}^{n}$:

$$
\sum_{x} p_{x}[x]
$$

where $\sum_{x} p_{x}=1$ and $\forall x: p_{x} \geq 0$.
(2) The evolution of the system is realized by a stochastic matrix $A=\left(a_{x y}\right)$:

$$
A: \sum_{x} p_{x}[x] \mapsto \sum_{x} q_{x}[x]
$$

where $q_{x}=\sum_{y} a_{x y} p_{y}$.

Quantum computation

(1) The state of the system is a is a formal sum (superposition) over $x \in\{0,1\}^{n}$

$$
\sum_{x} \alpha_{x}[x]
$$

where $\sum_{x}\left|\alpha_{x}\right|^{2}=1$.
(2) The evolution of the system is realized by a unitary matrix $U=\left(u_{x y}\right)$:

$$
U: \sum_{x} \alpha_{x}[x] \mapsto \sum_{x} \beta_{x}[x]
$$

where $\beta_{x}=\sum_{y} u_{x y} \alpha_{y}$.

Dirac notation

In quantum computation there is a convention to write vectors inside angled brackets. Therefore we will write the state of quantum system as:

$$
|\psi\rangle=\sum_{x} \alpha_{x}|x\rangle
$$

Bra and ket vetors

- $|\psi\rangle$ - column vector with components α_{x}
- $\langle\psi|$ - row vector with components $\overline{\alpha_{x}}$ (dual of ψ)
- $\langle\psi \mid \phi\rangle$ - inner product of vectors ψ and ϕ

Dirac notation

Example with standard basis vectors of \mathbb{C}^{2}

$$
\binom{1}{0} \equiv|0\rangle,\binom{0}{1} \equiv|1\rangle
$$

Another example

$$
\begin{aligned}
& |\psi\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{i}{\sqrt{2}}|1\rangle \equiv \frac{1}{\sqrt{2}}\binom{1}{-i} \\
& \langle\psi|=\frac{1}{\sqrt{2}}\langle 0|+\frac{i}{\sqrt{2}}\langle 1| \equiv \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & i
\end{array}\right)
\end{aligned}
$$

Measurement

Descriptive definition

Measurement with respect to some given orthonormal basis $\mathcal{B}=\left\{\left|b_{1}\right\rangle,\left|b_{2}\right\rangle, \ldots,\left|b_{n}\right\rangle\right\}$ of the state space of some quantum system, when performed on a state

$$
|\psi\rangle=\sum_{i=1}^{n} \alpha_{i}\left|b_{i}\right\rangle
$$

(where $\sum_{i=1}^{n}\left|\alpha_{i}\right|^{2}=1$) gives i with probability $\left|\alpha_{i}\right|^{2}$ and leaves the system in a state $\left|b_{i}\right\rangle$.

Abelian Hidden Subgroup Problem (HSP)

We are given:

- a finite Abelian group $(G,+)$
- quantum black box for function $f: G \rightarrow X$ which is hiding some unknown subgroup H (f is constant and distinct on cosets of H).
Our goal is to determine the subgroup H.

Classical black box

Quantum black box

Figure: Black boxes for classical and quantum computing

Quantum Fourier transformation (QFT)

Definition

Quantum Fourier transformation (QFT) over an Abelian group G is defined as a linear map that acts on basis vectors $|g\rangle, g \in G$ in the following way:

$$
|g\rangle \mapsto \frac{1}{\sqrt{|G|}} \sum_{\psi \in \widehat{G}} \psi(g)|\psi\rangle,
$$

where \hat{G} is the set of irreducible representations of the group G.

Theorem

QFT is a unitary transformation.

Quantum Fourier transformation (QFT)

QFT acts on basis states as follows:

$$
|g\rangle \mapsto \frac{1}{\sqrt{|G|}} \sum_{\psi \in \widehat{G}} \psi(g)|\psi\rangle,
$$

$$
|\widehat{G}|=\# \text { of conjugacy classes of } G=|G|
$$

Therefore we can identify irreducible representations with group elements. It turns out that there is a natural way how to do that.

Example

Let $G=\mathbb{Z}_{n}$ (cyclic group). Then $\widehat{G}=\left\{\psi_{t}(g)=e^{2 \pi i t g / n} \mid t \in G\right\}$ and QFT acts on basis states ar follows:

$$
|g\rangle \mapsto \frac{1}{\sqrt{n}} \sum_{t=0}^{n-1} e^{2 \pi i t g / n}|t\rangle
$$

But how do we identify irreducible representations of Abelian group G with its elements, if G is not cyclic?

Structure theorem

We know that every finite Abelian group G can be expressed as $G=\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}$

Therefore for Abelian group G we have:

$$
\hat{G}=\left\{\left.\psi_{t}(g)=e^{2 \pi i\left(\frac{t_{1} g_{1}}{n_{1}}+\frac{t_{2} g_{2}}{n_{2}}+\cdots+\frac{t_{k} g_{k}}{n_{k}}\right)} \right\rvert\, t_{i}, g_{i} \in \mathbb{Z}_{n_{i}}\right\}
$$

where $g=\left(g_{1}, g_{2}, \ldots, g_{k}\right)$ and $t=\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ are elements of group G. We identify ψ_{t} with t.

Quantum algorithm for HSP

Step 1 Construct a uniform superposition over group elements in the first register:

$$
\left|\varphi_{1}\right\rangle=\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle|0\rangle
$$

Step 2 Query the black box Q_{f} with the state constructed in Step 1:

$$
\begin{aligned}
\left|\varphi_{2}\right\rangle & =Q_{f} \frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle|0\rangle=\frac{1}{\sqrt{|G|}} \sum_{g \in G} Q_{f}|g\rangle|0\rangle= \\
& =\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle|0 \oplus f(g)\rangle=\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle|f(g)\rangle
\end{aligned}
$$

Quantum algorithm for HSP

State after Step 2:

$$
\left|\varphi_{2}\right\rangle=\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle|f(g)\rangle
$$

Step 3 Measure rightmost register in basis $\mathcal{B}_{r}=\{|x\rangle\}_{x \in X}$. With probability $p_{r}=|H| /|G|$ after measurement the state collapses to

$$
\left|\varphi_{3, r}\right\rangle=\frac{1}{\sqrt{|H|}} \sum_{h \in H}|r+h\rangle|f(r)\rangle=\left(\frac{1}{\sqrt{|H|}} \sum_{h \in H}|r+h\rangle\right)|f(r)\rangle
$$

where $r \in R$ (the set of the representatives for the cosets of subgroup H).
We can discard the last register and redefine $\left|\varphi_{3, r}\right\rangle$ as follows:

$$
\left|\varphi_{3, r}\right\rangle=\frac{1}{\sqrt{|H|}} \sum_{h \in H}|r+h\rangle
$$

State after Step 3:

$$
\left|\varphi_{3, r}\right\rangle=\frac{1}{\sqrt{|H|}} \sum_{h \in H}|r+h\rangle
$$

Step 4 Apply quantum Fourier transformation (QFT) to state obtained in Step 3:

$$
\begin{gathered}
\left|\varphi_{4, r}\right\rangle=\operatorname{QFT}\left|\varphi_{3, r}\right\rangle=\frac{1}{\sqrt{|H| \cdot|G|}} \sum_{h \in H} \sum_{\psi \in \hat{G}} \psi(r+h)|\psi\rangle= \\
=\frac{1}{\sqrt{|G|}} \sum_{\psi \in \hat{G}} \psi(r)|\psi\rangle\left(\frac{1}{\sqrt{|H|}} \sum_{h \in H} \psi(h)\right) \\
=\sum_{\psi \in \widehat{G / H}} \sqrt{\frac{|H|}{|G|}} \psi(r)|\psi\rangle
\end{gathered}
$$

State after Step 3:

$$
\left|\varphi_{3, r}\right\rangle=\frac{1}{\sqrt{|H|}} \sum_{h \in H}|r+h\rangle
$$

Step 4 Apply quantum Fourier transformation (QFT) to state obtained in Step 3:

$$
\begin{aligned}
\left|\varphi_{4, r}\right\rangle & =\operatorname{QFT}\left|\varphi_{3, r}\right\rangle=\frac{1}{\sqrt{|H| \cdot|G|}} \sum_{h \in H} \sum_{\psi \in \hat{G}} \psi(r+h)|\psi\rangle= \\
& =\frac{1}{\sqrt{|G|}} \sum_{\psi \in \hat{G}} \psi(r)|\psi\rangle\left(\frac{1}{\sqrt{|H|}} \sum_{h \in H} \psi(h)\right)
\end{aligned}
$$

Now let us compute

$$
\begin{aligned}
& S(\psi):=\frac{1}{\sqrt{|H|}} \sum_{h \in H} \psi(h), \\
& =\sum_{\psi \in \widehat{G / H}} \sqrt{\frac{|H|}{|G|}} \psi(r)|\psi\rangle
\end{aligned}
$$

State after Step 4:

$$
\left|\varphi_{4, r}\right\rangle=\sum_{\psi \in \widehat{G / H}} \sqrt{\frac{|H|}{|G|}} \psi(r)|\psi\rangle
$$

Step 5 Measure the state $\left|\varphi_{4, r}\right\rangle$ in basis $\mathcal{B}_{\psi}=\{|\psi\rangle\}_{\psi \in \hat{G}}$. We get outcome $\psi \in \widehat{G / H}$ with probability

$$
p_{\psi}=\left|\sqrt{\frac{|H|}{|G|}} \psi(r)\right|^{2}=\frac{|H|}{|G|} .
$$

Let us review the steps we have done so far.

Figure: Intermediate states during the execution of quantum algorithm for Abelian hidden subgroup problem.

The state after Step 5 is:

$$
\left|\varphi_{5}\right\rangle=|\psi\rangle
$$

with probability $|R| \cdot p_{r, \psi}=|H| /|G|$, where $\psi \in \widehat{G / H}$ (irreps trivial on H).

Step 6 Repeat $c+4 \in O(\log (|G|))$ times steps 1 to 5 , where $c=\sum_{i=1}^{l} c_{i}$ and $|G|=\prod_{i=1}^{l} p_{i}^{c_{i}}$. Each time we sample uniformly from those irreducible representations of G which are trivial on H. After $c+4$ iterations we have enough information to output the full set of the generators of H with probability at least $2 / 3$.

Complexity of Quantum HSP algorithm

Both query and time complexities for quantum algorithm are polynomial in $\log (|G|)$, which is significantly smaller than classical complexities.

Applications

- Order Finding
- Shor's Factorization algorithm with time complexity $O\left(\log ^{2} N\right)$. At the same time best known classical (probabilistic algorithm) runs in time $O(2 \sqrt{\log N})$
- Discrete logarithm

國 Jean－Pierre Serre，Linear Representations of Finite Groups， Springer－Verlag， 1977.

圊 Michael A．Nielsen，Isaac L．Chuang，Quantum Computation and Quantum Information，Cambridge University Press， 2000.

R Phillip Kaye，Raymond Laflamme，Michele Mosca，An Introduction to Quantum Computing，Oxford University Press， 2007.

目 Andrew M．Childs，Wim van Dam，Quantum Algorithms for Algebraic Problems，unpublished．

圊 Michael Artin，Algebra，Prentice Hall， 1991.
國 Peter Shor，Polynomial－Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer．SIAM J．Computing，26：1484Ü－1509， 1997.
目 David Simon，On the Power of Quantum Computation，SIAM J．Computing，26：1474Ü－1483， 1997.

